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Not long ago we published an article dedicated to attempt the creation of a bridge between the continuous, physical optics 
and the discrete, mathematical optics [P. C. Logofatu and D. Apostol, "The Fourier transform in optics: from continuous to 
discrete or from analogous experiment to digital calculus," J. Optoelectron. Adv. M., 9(9), 2838-2846 (2007)]. Our motivation 
was that the connection between continuous and discrete is insufficiently investigated and the two formalisms stand alone 
for the most part. Our approach was one of the type top-down by enunciating the principles and then proving them, though 
we tried to be as user-friendly as possible and limit the inevitable mathematics to a minimum. In this article the theme is 
retaken from a different perspective, using a more bottom-up type of approach. Formalisms are built from one another. A 
great importance is accorded to the sampling theorem which is used to show that in the case of the functions with limited 
bandwidth the continuous and the discrete Fourier transform function coincide in the sample points if the sampling is 
properly made. The alteration of the output of the Fast Fourier Transform due to the shifting of the input is analyzed and 
ways to undo it are devised. We also found out an improved, more accurate form of the sinc interpolation function from the 
Nyquist-Shannon theorem.  
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1. Introduction  
  
Discrete optics or digital optics is fast becoming a 

classical chapter in optics and physics in general, despite 
its relative recent arrival on the scientific scene. In fact 
discrete optics appeared precisely at the time of the 
computer revolution which made possible fast discrete 
numerical computation. A new chapter in mathematics was 
opened; new, discrete formalisms were designed to deal 
with the specific problems of discrete numerical 
calculation. Of course, this theoretical effort was done not 
only for the benefit of optics but of all quantitative 
sciences. Optics, however, and diffractive optics in special, 
turned out to be especially suited to benefit from the 
development of discrete mathematics. One reason is that 
the optical diffraction in itself is a mathematical transform. 
An ordinary optical element such as the lens turned out to 
be a genuine natural optic computer, namely one that 
calculates the Fourier transform as Goodman shows in [1] 
chapter 5. Moreover, the development of the Fast Fourier 
Transform (FFT) algorithm by Cooley and Tookey in 1965 
[2] boosted spectacularly the development of Fourier 
optics and, more or less directly, of all the domains related 
to discrete optics, such as Fresnel diffraction, Rayleigh-
Sommerfeld diffraction, optical convolution, because all of 
them are more or less related with or may be reduced to 
the Fourier transform, i.e. the computation is reduced to 
FFT.  

There is, of course, a vast deal of good textbooks and 
tutorials dedicated to the fundamentals of Fourier and 

discrete optics [1,3-6], but in our opinion they suffer from 
at least three shortcomings, sometimes simultaneously. On 
the one hand the reader is required to go through a lot of 
theoretical material justified just by an excess of 
mathematical rigorousness that once satisfied is never 
invoked anymore. We take advantage of the rationale that 
if something exists then its mathematical rigorousness is 
guaranteed. (We assumed the physicist point of view, 
exactly the opposite point of view to the Eleatics and 
Pythagoreans who denied the existence of things that do 
not pass the test of rationality; we considered that 
empirical evidence of existence releases us from the 
burden of justifying it rigorously.) On the other hand these 
books are swamped in a multitude of diverging 
applications which makes difficult for a beginner to select 
the essential knowledge necessary to undertake in the 
bottom-up fashion a research or engineering project in 
discrete optics. Finally, these basic elements of discrete 
optics are presented in a formal rather than practical 
manner, which makes difficult their use by the reader, for 
instance in a computer programme. Also, important fine 
details, little secrets of the craft, are oftentimes left out in 
the presentation, probably being considered trivial, but 
they may cause the beginner to lose a lot of time before he 
can find them out by himself.  

But probably one of the worst shortcomings of the 
textbooks listed above is not linking in the proper manner 
the fertile but inapplicable in practice in itself field of 
discrete optics, to continuous, physical optics, where the 
experiments take place and we can take advantage of the 
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progress of the discrete optics. In our own scientific 
research activity in the field of digital optics we 
encountered the difficulty almost at every step [7-12]. Not 
long ago [13] we attempted to express the physical 
meaning of the discrete Fourier transform (DFT), to put it 
in the terms of the continuous Fourier transform (CFT) 
using the Fourier series as an intermediary concept. In the 
present paper more stress is put on the Fourier series and 
the Nyquist-Shannon sampling theorem is brought in the 
middle for proving new, previously unreported to our 
knowledge, connections between DFT and CFT. This 
continued effort on our part will hopefully prove benefic to 
all those who undertake projects in discrete optics and they 
are hampered by the gap between DFT and CFT, discrete 
mathematics, digital computers on the one hand and real 
physical experiments on the other hand.  

 
 
2. The Fourier transform  
 
The Fourier (or harmonic) analysis is a 

methodology used to represent a periodic function into a 
series of harmonic functions. The harmonic functions are 
well known elementary functions. Fourier analysis is 
applicable only for linear systems, where the principle of 
linear superposition is valid.  

Let f(x) be a real or complex periodic function, having 
the period ∆x. The set of functions  
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are the harmonic functions of f. Except for the constant 
function ψ0(x)=1, all the other functions in the set exhibit 
oscillations with quantized angular frequencies ωk, which 
are integer multiples of ω1=2π/∆x, called the fundamental 
angular frequency. We have plotted the fundamental 
harmonic ψ1, as well as the seventh order harmonic ψ7 in 
the figures 1 and 2 respectively, over a range whose length 
equals the period ∆x of the function f, keeping in mind that 
these functions repeat periodically over the whole real 
axis. Being complex functions, we have plotted the real 
and imaginary parts separately. The two parts are identical, 
but they are phase shifted: the real part has a phase delay 
of π/2 (a quarter of a period) relative to the imaginary part.  

 
Fig. 1. The fundamental harmonic plotted over a range 

whose length equals the period ∆x of the function f. 

 
Fig. 2. The seventh order harmonic. Over the same 

interval ∆x this function repeats seven times. 
 
 

This infinite set of harmonic functions is an 
orthonormal set over the range of x∈[–∆x/2, ∆x/2]: 
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The Sturm-Liouville theorem proves that a function f 

respecting the Dirichlet conditions can be expressed as a 
linear combination of the harmonic functions (see for 
instance Arfken and Weber [14] chapter 9)  
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This expansion is called Fourier series and the 

coefficients ck are called Fourier coefficients.  
The ck coefficients are complex quantities. It is 

customary to represent the modulus of these coefficients 
into a histogram plot, called amplitude discrete spectrum. 
In order to give an example of such a plot, let us consider 
the periodic function f, shown in Fig. 3 represented over a 
range of 4 ∆x periods (the actual number of periods is 
infinite, or course). This particular function was chosen for 
its illustrative properties regarding the Fourier transform. 
The function f has the actual form 
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It is a Gaussian type function, whose meaningful part 

of the Fourier spectrum is centred in the origin but due to 
the sinusoidal modulation has also recognizable, non-
negligible features at a certain distance from the centre. 
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We calculated the Fourier coefficients and had their 
modulus (amplitude) graphically represented in Fig. 4. 
Theoretically, there are an infinite number of Fourier 
coefficients. However, above a certain cut-off order, their 
amplitudes become very small and we can neglect them. 
The abscissa of the spectrum is proportional to the 
frequency. The frequencies corresponding to the spikes in 
Fig. 4 are multiples of the fundamental spatial frequency 
1/Δx. At the same time, the multiples order is the index of 
the coefficient. For example, if we notice a strong spectral 
component at the 10th position, we say that the 10th 
harmonic, of angular frequency ω10=10ω1, is one of the 
dominant harmonics of the spectrum. Since only a few 
number of spectral harmonics have significant amplitudes, 
we say that the given function f can be well approximated 
by a superposition of a few Fourier harmonics.  

In the previous example we had a symmetric spectrum 
because the function f is a real one. Otherwise, if the 
function were a complex one, its spectrum would no 
longer be symmetric. 

The bidimensional (2D) Fourier series extends the 
regular Fourier series to two dimensions and is used for 
harmonic analysis of periodic functions of two variables. If 

∆x and ∆y are the periods of the f(x, y) function along the 
directions defined by the x and y variables, we define two 
fundamental angular frequencies: ωx=2π/∆x and ωy=2π/∆y. 
The basis of 2D Fourier series expansion is built up from 
2D Fourier harmonics, which are products of two simple 
1D harmonics: 
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The Fourier series of the function f(x, y) would be 
double indexed, and the Fourier coefficients would form a 
matrix.   
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Fig. 3. An infinitely periodic function represented over a range of 4 ∆x periods. 

 

 
 

Fig. 4. The discrete amplitude spectrum of the function f, from Fig. 3 normalized to the component of maximum amplitude. 
 

 
 

Fig. 5. The function f with the same content introduced into a double period 2∆x, but also infinitely periodic . 
 

 
 

Fig. 6. The discrete spectrum of the function f with double period from Fig. 5. 
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Fig. 7. The function f with a quadruple period. There simply was no room to represent more periods.  

 

 
Fig. 8. The discrete spectrum of the function f with quadruple period from Fig. 7.  

 

 
Fig. 9. The Fourier transform of f with infinite period, that is Δx→∞, not that the number of periods Δx is infinite.  

  
 

The continuous Fourier transform (CFT) may be 
understood by analyzing how the spectrum of the periodic 
function f changes as a result of enlarging its period or the 
gradual change of the spectrum from Fig. 4 to Fig. 9. The 
larger the period ∆x of f, the smaller the fundamental 
frequency δω=2π/∆x is, and the quantized set of angular 
frequencies ωk=k δω are bunching together. First, we 
doubled the period of the function f by transferring all its 
values within one period into a new interval of 2 ∆x, which 
became its new period, as seen in Fig. 5. We determined 
the spectrum of the modified function. Now we had 
spectral components in intermediary positions too, as seen 
in Fig. 6 when compared with the spectrum from Fig. 4. 
(We preserved the same scale on the abscissa, as on the 
first spectrum for comparison convenience. We also used 
the same scale for the ordinate, so that the Fourier 
coefficients reduce their amplitudes to one half, for 
reasons of authenticity.) When we increased four-fold the 
period of function (Fig. 7), the spectrum had an even 
higher resolution while the Fourier coefficients decreased 
to one quarter (Fig. 8). Finally, we defined the function f 
only for one infinite period, reproducing its characteristic 
pattern only once, without reproducing it periodically, 
while outside we set it to equal zero. Now, the function f 
was no more periodic, or we can say that we have 
extended its period to infinity, ∆x→∞. In this limit case the 
spectrum is no more discrete, but it becomes continuous 
(Fig. 9). Related to the continuous spectrum, we mention 
some facts: 

a) The difference between two consecutive quantized 
angular frequencies turns infinitesimal: ωk+1–
ωk=2π/∆x=dω→0, so we replaced the discrete values ωk 
by a continuous quantity ω.  

b) All the Fourier coefficient amplitudes shrank to 
zero. For this reason we replaced the Fourier coefficients 

by the quantities ∆x ck, which do not shrank to zero but 
remain finite and they became the new instruments of 
practical interest for describing the function f. 

 

 
( )

( )∫

∫∫
∞

∞−
∞→Δ

Δ

Δ−

Δ

Δ−

−=Δ

−==Δ

dxxixfcx

dxxixfdxxxfcx

kkx

x

x
k

x

x
kk

ω

ω

exp)(lim

,exp)()(ψ)(
2/

2/

2/

2/

*

  (7) 

 
c) The integer index k turns a continuous variable 

when ∆x→0, hence it is more appropriate to denote the 
Fourier coefficients replacements ∆x ck by a continuous 
function F(ω), that we call Fourier transform of the f 
function: 
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d) The Fourier series (3) approximates an integral, and 
on the limit ∆x→∞ the series converge towards that 
integral: 
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The rationale shown above for the transition from 

Fourier series to CFT is similar to the one shown in [13]. 
Therefore, if the function f is not periodic, it cannot be 
decomposed into a series of Fourier harmonics, but into a 
continuous superposition of Fourier harmonics, called 
Fourier integral. The Fourier integral decomposition is 
possible providing that the modulus of the non periodic 
function f can be integrated over the whole real axis, that is 

the integral dxxf∫
∞

∞−

)(  should exist (and be finite). Very 
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common types of functions that fulfil this condition, 
largely used in practical applications are the functions with 
finite values over a compact interval and with zero values 
outside that interval. We implicitly assumed that the 
function f considered above it of that type. 

Now let us consider the definition of CFT (8) and the 
relation used to decompose the non-periodic function f into 
the Fourier integral (9). We notice that each transform is 
the inverse of each other: 
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We say the functions f and F form a pair of Fourier 
transforms. The function F is obtained by applying the 
direct Fourier transform to the function f, while the 
function f is obtained by applying the inverse Fourier 
transform to the function F.  
 The bidimensional (2D) Fourier transform extends 
the Fourier transform to two dimensions and is used for 
two variables functions, which should satisfy a similar 

condition: the integral ∫ ∫
∞
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finite. The Fourier integral is a double one:  
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While the 1D Fourier transform can be used as an 
illustration, or as an approximation of the 2D Fourier 
transform in the special cases where the input function f 
does not depend on one or two coordinates, but three or 
more, although mathematically treatable, they present no 
interest for the physicist, because the 3D limitation of the 
world restricts practical interest to maximum 2D Fourier 
transform.  

The discrete Fourier transform (DFT) has the 
purpose to approximate the continuous Fourier transform, 
and it is used for reasons of computation speed 
convenience. Although DFT is an independent formalism 
in itself, it was formulated so that it converges to the 
genuine continuous Fourier transform. DFT needs the 
function f(x) as a set of a finite number N of samples, 
taken in N equidistant sample points, within a ∆x length 
interval: 
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In practical applications the function f is only given as 

a set of samples, and even if one knows its analytical 
expression, in most cases it’s not possible to determine its 
Fourier transform by analytical calculus.  

The definition of DFT can be established after a series 
of approximations. First, one approximates the Fourier 
transform by a Fourier series, which is defined as a set of 
coefficients associated to a set of equidistant frequencies. 
For this purpose we extend the domain of the sampled 
function to the whole real axis, making the function a 
periodic one, with the period of ∆x which contains the 
entire initial definition domain of the function, in order to 
be able to expand it in Fourier series. The harmonic 
functions used as a decomposition basis are sampled 
functions too: 
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We modify the definition of the scalar product of these 
functions replacing the integral by a sum that approximates 
it:  
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There are only N distinct discrete harmonic functions, 

which are linear independent and can build up an 
orthonormal basis, because they repeat periodically: 
ψn±N(x)=ψn(x). The Fourier coefficients will be calculated 
in the same way, approximating the integral by a sum:  
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There are only a limited set of N Fourier coefficients, 
because they reproduce themselves with the N period too, 
cn±N=cn. The original discrete function f can be expanded 
into a series of N discrete harmonic functions: 
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At this point we can define the discrete Fourier 

transform: it is a sampled function F whose samples are 
the set of N Fourier coefficients approximately calculated 
by sums in Eq. (15): Fn=cn, n=–N/2, –N/2+1,..., N/2–1. 
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The samples of F are obtained applying a transform to the 
samples of f and they can be inverted in order to yield back 
the samples of f from that of F as shown below in Eq. (17).  

 

FfNNNnm
N
mniFf

N
mnif

N
F

DFT

N

Nn
nm

N

Nm
mn

⎯⎯ →←−+−−=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛−=

∑

∑
−

−=

−

−=

12,,12,2,

,2exp

,2exp1

12/

2/

12/

2/

K

π

π

(17) 

 
The two sets of samples from f and F form a pair of 

discrete Fourier transforms. The transform is a linear one 
and can be expressed as by means of a square matrix of 
N×N dimensions: 
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where for clarity we used the arrow and the triangular hat 
over-scripts to designate vectors and matrices respectively; 
also, the dot signifies dot product or matrix multiplication. 
To make possible the matrix multiplication we assume that 
the vectors are columns, matrices with N rows and 1 
column, a practice we will continue throughout the article. 
Actually the convention is that in any indexed expression 
the first index represents the row and the second the 
column. The absence of the second index indicates we deal 
with a column or a vector. More than three indexes means 
we deal with a tensor and this cannot be intuitively 
represented easily. Of course the values Fn do not equal the 
corresponding samples of the continuous Fourier 
transform, but they approximate them. The greater the N, 
the better the approximation will be. In fact the Fourier 
coefficients represented in Fig. 8, as well as the Fourier 
transform represented in Fig. 9, were computed using the 
discrete Fourier transform with just a very large number of 
samples.  
 The 2D discrete Fourier transform may be obtained 
easily by generalizing Eqs. (15-17). Namely, 2D DFT has 
the form 
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where M×N is the dimension of the matrix of samples fmn 
and, consequently, the dimension of the matrix of the 
Fourier coefficients, or of the DFT Fpq, with M and N 
completely unrelated, and we also have the short hand 
notations 
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The inverse discrete Fourier transform has, of course, the 
form 
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The linearity of the Fourier transform permitted the matrix 
formulation in Eq. (18) of the direct and inverse 1D DFT. 
However the generalization to the 2D DFT leads us to a 
multidimensional matrix formulation: 
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where ( )2f̂  and ( )2F̂  are tensors of rank 2 (ordinary 2D 

matrices) and ( )4Ŵ  and ( )
1

4
ˆ −W  are tensors of rank 4. The 

direct and the inverse Fourier transforms are dot products 
of the tensors ( )4Ŵ  and ( )

1
4

ˆ −W  with the 2D matrices ( )2f̂  and 

( )2F̂ . The dot product of two tensors result in tensors with 
the rank equal to the sum of the tensors rank minus 2. Eqs. 
(19-22) are actually those with which one deals when 
operating 2D discrete Fourier transforms and not Eqs. (15-
18). Eqs. (19-22) may seem complicated but the mastery 
of Eqs. (15-18) leads easily to the multidimensional forms. 
The term “tensor” was introduced for the sake of 
completeness but it does not change the simple elementary 
aspect of Eqs. (19,21) that are expressed in tensor form in 
Eq. (22). For instance one may notice that the 2D DFT is 
actually 2 series of 1D Fourier transforms DFT applied 
first to the rows of the input matrix then to the resulting 
columns, although the order of the operations does not 
matter because the end results is the same.  

The direct computation of all the samples Fn requires 
an amount of computation proportional to N2. However, 
the Ŵ  matrix has some special properties that enable 
massive reduction of the operations required to perform 
the matrix multiplication fW

r
.ˆ . As far back as 1965 there 

is known a method to compute the discrete Fourier 
transform by a very much reduced number of operations, 
the FFT algorithm (Fast Fourier Transform) [2], which 
allows computing the discrete Fourier transform with a 
very high efficiency. Originally designed for samples with 
the number of elements N being powers of 2, now FFT 
may be calculated for samples with any number of 
elements, even, what is quite astonishing, non-integer N. A 
fast algorithm for computing a generalized version of the 
Fourier transform named the scaled or fractional Fourier 
transform was also designed. The normalization factors 
used in Eqs. (15-18) for the direct and the inverse 
transforms are a matter of convention and convenience, 
but they must be carefully observed for accurate 
calculations once a convention was chosen.  

Since subroutines for FFT calculations are widely 
available, there is no need to discuss here in detail the FFT 
formalism. For the interested reader we recommend Press 
et al [15] chapter 12. We will only mention that the 
algorithm makes use of the symmetry properties of the 
matrix multiplication by the techniques called time (or 
space) decimation and frequency decimation, techniques 
that can be applied multiple times to the input in its 
original and the intermediary states, and with each 
application the computation time is almost halved. The 
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knowledge of the FFT algorithm in detail may help the 
programmer also with the memory management, if that is a 
problem, because it shows one how to break the input data 
into smaller blocks, performs FFT separately for each of 
them and reuniting them at the end.  

There is, however, one fact about FFT that even the 
layman needs to know it in order to use the FFT 
subroutines. Namely, for mathematical convenience the 
DFT is not expressed in a physical manner as in Eqs. (15-
18) where the current index runs from –N/2 to N/2–1 but 
from 0 to N–1:  
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This shifting of the index allows the application of the 
decimation techniques we talked about, but also has the 
effect of a transposition of the wings of the input and as a 
consequence the, say, “mathematical” output is different 
than the “physical” output, the one that resembles what 
one obtains in a practical experiment, although the two 
outputs are, of course, closely connected. Reference [13] 
shows that in order for formulae (23,24) to work the wings 
of the input vector should be transposed before the 
application of the FFT procedure and then the wings of the 
output vector should be transposed back all in a manner 
consistent with the parity of the number of samples. 
Namely for even N the input and the output vectors are 
divided in equal wings. However, for odd N the right wing 
of the input starts with the median element, therefore is 
longer with one element; but in the case of the output it is 
the left wing which contains the median element and is 
longer. This transposition of the wings is the same thing as 
the rotation of the elements with N/2 when N is even, and 
(N–1)/2 when N is odd. For the case of odd N the direction 
of the rotation is left for the input and right for the output. 
For even N the direction does not matter.  

However, Fourier optics researchers or even FFT 
subroutines programmers do not seem generally concerned 
with the problem caused by this initial transposition or 
rotation, although, in our opinion, is important. In the 
programming environment Matlab™ there is a family of 
functions of which the main is named “fftshift”, which 
performs a transposition we claim it is necessary, but not 
sufficient. They recommend the shift to be done only to 
the output in order to put the zeroth order in the centre 
[16]. But this “fftshift” does not provide the correct output, 
only the correct amplitude spectrum, while the phase is 
changed, although retrievable. In a 2D case when both M 
and N are even the phase change is just an alternation of 
signs, in a chess board style. In other situations the phase 
change is more complicated. It is true that in most cases it 
is the amplitude spectrum that matters most, but 
sometimes the phase cannot be neglected and the 
transpositions or rotations operations mentioned above 
have to be performed. In the 2D case the transpositions do 
not have to be a double series of wing transpositions for 
rows and columns. One can make just two diagonal 
transpositions of the quadrants of the input and output 
matrices. The division of the input and output matrices 

depends on the parity of M and N. For even M and N 
things are simple again. The matrices are divided in four 
equal quadrants. When one of the dimensions is odd the 
things get complicated, but here again we have a simple 
rule of thumb. If the number of rows M is odd, then the left 
quadrants of the input matrix have the larger number of 
rows (one more) while the left quadrants of the output 
matrix have the smaller number (one less). For odd N the 
lower quadrants of the input matrix have the larger number 
of columns (one more) while the lower quadrants of the 
output matrix have the smaller number (one less). And 
viceversa.  
 Besides the procedure with the transposition of the 
input before the FFT and the inverse transposition of the 
output after the FFT, there is another solution for 
reconciling the results of the mathematical calculation with 
the physics, but for this solution, in order to be intelligible 
to the reader, he must first familiarize himself with the 
notions of the Nyquist-Shannon sampling theory from the 
next section. At the end of section 3 we will present this 
alternative solution.  
 
 

3. The sampling theorem  
 

The Nyquist-Shannon sampling theorem establishes 
the fact that a real or complex function with limited 
Fourier spectrum can be sampled without loss of 
information. More precisely, if a continuous function is 
sampled with a sampling frequency equal or higher than 
the double of its bandwidth, that continuous function may 
be reconstructed exactly by interpolating its sample (using 
an appropriate method of interpolation). The sampling 
condition required by the theorem may be expressed by the 
inequality  

 
2π/δx>∆ω                                           (25) 

 
where δx is the sampling step and ∆ω double the 
bandwidth of angular frequency. We will illustrate the 
theorem with the help of a concrete example. Let us take 
function f from Fig. 3, with the spectrum graphically 
represented in Fig. 4. Its period is ∆x and it has a discrete 
and bounded spectrum. The spectrum bandwidth is 15 
units ω1; hence |ω|<15 ω1. In order to sample correctly f, 
according to the sampling theorem, the sampling angular 
frequency ωs must be larger than ∆ω=30ω1=60π/∆x. The 
sampling step δx must be smaller than 2π/ωs=∆x/30. 
Therefore we need at least 30 samples to accurately 
reconstruct f on the interval of the period ∆x. Let us denote 
N=30 the number of samples and let us divide the interval 
in N intervals which will have the length δx, the sampling 
interval, and we collect the values of f at the left ends of 
the sampling intervals.  
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It remains to be found the interpolation method by which 
to reconstruct the continuous function f in every point x 
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from the N samples. We notice that the discrete spectrum 
of f contains about 30 significant Fourier coefficients (Fig. 
4), which is, as expected, the same number N as the 
minimum number of samples required by the sampling 
theorem. In any point x the function f may be expanded in 
a series as in Eq. (3) but now the series is finite 
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The Fourier coefficients are proportional to the samples of 
the continuous Fourier transform of the nonperiodic 
version of f, which has a compact support of length ∆x:  
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The Fourier coefficients do not require anymore the 
calculation of the integrals from (28) because they can be 
obtained simpler. This simpler way involves the 
expression of the N samples of f using the finite series of 
Fourier coefficients: 
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We have N linear relations between the samples fn and the 
Fourier coefficients ck. They constitute a system of linear 
equations and they may be written compactly in matrix 
form 
 

cψf
rr

.ˆ= ,                                  (30) 
 
where f

r
 and c

r
 are vectors of N elements, and ψ̂  is a 

square N×N matrix with the elements 
( )Nnkikn π2expψ = . This matrix is self-adjoint, i.e. its 

inverse is the conjugate transposed version of itself. 
Therefore Eq. (30) is easy to solve.   
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Fig. 10. Correctly sampled function (in 32 points). 

 

 
Fig. 11. The real part of the weight function h0(x). 

 

 
Fig. 12. Undersampled function (14 points with a 

minimum of 30 points). 
 

 
 

Fig. 13. The reconstructed function from an insufficient 
number of samples. 

 
 Let us express now the continuous function f(x) in 
terms of its samples: 
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Eq. (32) is the interpolation formula we were seeking. 
The function f(x) can be written as a linear combination of 
its samples. The set of functions hn(x) plays the role of 
weights. In Fig. 10 the function f with its samples are 
illustrated. In Fig. 11 the real part of the weight function h0 
is represented. The weight functions of other indexes differ 
only by a translation. In the sampling points these 
functions behave like the discrete Kronecker-Delta 
function: hn(xm)=δmn. It is not surprising that the weight 
functions resemble the sinc functions. Actually, when 
N→∞ the function hn(x) tend to sinc functions.  
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Yet most textbooks presenting the sampling theorem 

mentions only the sinc interpolation formula, which is 
valid only for an infinite number of samples [1,3-6,17]. In 
practical applications a functions can have only a finite 
number of samples. Therefore the interpolation formula 
from Eq. (32) is more suitable for practical application 
than the sinc formula from Eq. (33), being more precise.  

For completeness we show in Fig. 12 the function f 
insufficiently sampled, according to the Nyquist-Shannon 
theorem. The function reconstructed from 14 samples only 
is represented in Fig. 13, a representation that bears little 
resemblance to the original function. This perturbation of 
the original function is names aliasing and is amply 
described in literature. For example see reference [17]. 
While undersampling leads to loss of information, 
oversampling is useless because does not bring new 
information.  

The proof of the exactness of the interpolation 
function put us now in a position to reassess the meaning 
of discrete Fourier transform, namely DFT is the finite set 
of Fourier coefficients of a periodic continuous function of 
limited Fourier spectrum.  Such a function is completely 
described by a finite set of Fourier coefficients as well as 
by the same number of samples. All three are equivalent 
ways of representing the same information. When we 
presented initially the notion of DFT we did not use yet the 
hypothesis that the input function f has a limited Fourier 
spectrum. We reached the definition of DFT through a 
series of reasonable assumptions and it seems logic to 
further assume that DFT is a better and better 
approximation of CFT if the number of samples increases. 
This continues to be true but for functions of limited 
Fourier spectrum DFT and CFT yields exactly the same 
results (with a proportionality constant of 1/∆x) if f is 
correctly sampled (see Collier et al, reference [6] chapter 
19).  
 Another interesting problem is the reconstruction of 
the continuous spectrum of the output function F(ω) by 
interpolating the output vector of DFT F

r
. The reciprocity 

of the DFT expressed in Eq. (17), the same as the 
reciprocity of CFT expressed in Eq. (11), leads us to a 
reciprocal formulation of the Nyquist-Shannon theorem by 

inverting the roles of f and F. Let us consider F a function 
of period ∆ω that we expand in Fourier series.  
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We will find the same interpolation formula for F using its 
samples Fk=F(ωk), k=–N/2,...,N/2–1. 
According to the sampling theorem the condition we have  
 

2π/δω>∆x,                                     (35) 
 
δω being the sampling step in the angular frequency 
domain. We notice the similarity to the sampling condition 
for f (25). Combining the inequalities (25) and (35) in a 
single synthesizing inequality 
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The space-bandwidth product ∆x⋅∆ω/2π is a quantity that 
expresses the quantity of information. A correctly sampled 
signal has a number of samples larger than the bandwidth-
product.  
 The reciprocal of the sampling theorem gives us the 
opportunity to note that, in the end, following a different 
path, we came to the same conclusions as reference [13]. 
The application of the Nyquist-Shannon theorem for the 
interpolation of f made us transform f into an infinitely 
periodic function and, as a consequence, to make F a 
discrete function. The reciprocal made F infinitely periodic 
and f discrete. The interpretation of DFT in terms of CFT 
leads us to make f and F infinitely periodic and discrete, 
just as in [13].  
 Now, as promised, we deliver the second solution to 
redress the alterations introduced by the rotation of the 
input samples in the output. The solution may be suggested 
by the analysis of the effects of the fftshift function on the 
output. As we will see for even N this new procedure may 
be simpler than the transposition solution offered at the 
end of section 2. We need to use a property of the Fourier 
transform called the shift theorem (see for instance 
Goodman [1] chapter 2). If F(ω) is the Fourier transform 
of f(x) then  
 

{ } ( ) ( )
( ) ( ) { })(exp

exp)(

axfaiF

orFaiaxf

+−=

=+

F
F

ωω

ωω
.             (37) 

 
The rotation of the elements of the finite input made 

for mathematical convenience is the equivalent of a shift 
of the input function f. This is because, as we know from 
reference [13], the DFT is the equivalent of the CFT of a 
discrete and infinitely periodic function having as elements 
the samples of the input of the DFT. In the case of an even 
N then the rotation shifts f with a=–N/2 δx, or simply –
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Δx/2. The “physical” output will then be related to the 
“mathematical” output by the relation  
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where m runs as usual from –N/2 to N/2, hence the 
necessity of ascribing as index for Fmath the modulo N 
value of m, because of the cyclical shift of the elements fm 
before the application of FFT and because in the 
coordinate system of the “mathematical” approach, the 
index runs from 0 to N–1. Eq. (38) is a particular case of 
the discrete shift theorem (see Yaroslavsky and Eden, 
reference 5 chapter 4). Therefore it is not enough to shift 
the output, one also has to multiply it “element by 
element” with an alternating sign vector (–1)m. For odd N 
the rotation shifts f with a=–(N–1)/2 δx. In this case the 
relation between the “physical” and the “mathematical” 
output is more complex.  
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Therefore the rotation of the input has the effect of 

multiplying the output with a linear phase, as well as 
rotation the output itself. One can see in Eqs. (38,39) that 
the rotation does not change the amplitude of the output 
but only the phase, fact that we mentioned first without 
proof at the end of section 2. The generalisation to the 2D 
case is obvious with the observation that the rows and the 
columns behave only according to the parity of their length 
regardless of the parity of the other dimension of the 
matrix.  
 
 

4. Conclusions  
 

Our previous attempt to bridge the gap between CFT 
and DFT, between physics and mathematics was by no 
means a closed and shut subject but rather was intended as 
an opening of new roads of research. This second paper, 
which brings a new perspective and new results, also 
brings a new insight into this problem. Using a bottom-up 
approach, it starts with the Fourier series and constructs 
from there the DFT while using the CFT. Some details, 
usually left out by other authors, such as the transposition 
of the input data done for the application of the FFT 
algorithm are explained and two solutions for dealing with 
the problem are presented. The second solution, presented 
at the end of section 3 even shows how the transposition of 
the input leaving the amplitude unchanged modifies the 
phase with a linear progressive phase function. The 
Nyquist-Shannon sampling theorem was involved in a 
complex manner in the analysis of the relation between 

CFT and DFT and it turned out surprising results. The 
reciprocal character of the Fourier transform allows for a 
reciprocal application of the sampling theorem this time to 
the spectrum function in the angular domain. The 
simultaneous application of the sampling theorem in the 
two domains made us return by another way to the 
conclusions of the earlier article [13]: that DFT, in terms 
of CFT, is the CFT of a periodic, discrete function which 
results in the Fourier spectrum being also discrete and 
periodic.  
 Along the way we also came upon an improved 
formulation of the interpolation formula usually named the 
sinc interpolation, which proves to be only approximately 
a combination of sinc functions.  
 
 

References  
 
  [1] J. W. Goodman, Introduction to Fourier Optics,  
         McGraw Hill, New York (1996).  
  [2] J. W. Cooley, J. W. Tookey, Mathematics of 

Computation 19, 297 (1965)  
  [3] R. Bracewell, The Fourier Transform and Its 

Applications, McGraw-Hill, New York (1965)  
  [4] E. O. Brigham, The Fast Fourier Transform: An 

Introduction to Its Theory and Application, Prentice-
Hall, Englewood Cliffs NJ (1973)  

  [5] L. Yaroslavsky, M. Eden, Fundamentals of digital 
optics, Birkhäuser, Boston (1996) 

  [6] R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical 
holography, Academic Press , New York (1971)  

  [7] V. Nascov, D. Apostol and F. Garoi, “Statistical 
processing of Newton's rings using discrete Fourier 
analysis,” Opt. Eng. 46(2) 028201 (2007)  

  [8] D. Apostol, A. Sima, P. C. Logofatu, F. Garoi, V. 
Nascov, V. Damian, I. Iordache, “Fourier transform 
digital holography” ROMOPTO 2006: Eighth 
Conference on Optics, V. I. Vlad Ed., Proc SPIE 6785 
678522 (2007) 

  [9] D. Apostol, A. Sima, P.C. Logofatu, F. Garoi, V. 
Damian, V. Nascov and I. Iordache, “Static Fourier 
transform lambdameter” ROMOPTO 2006: Eighth 
Conference on Optics, V. I. Vlad Ed., Proc SPIE 6785 
678521 (2007)  

[10] V. Nascov and P. C. Logofatu, "Fast computation 
algorithm for the Rayleigh-Sommerfeld diffraction 
formula using a type of scaled convolution," Appl. 
Opt. 48(22), 4310-4319 (2009)  

[11] P. C. Logofatu, A. Sima and D. Apostol, "Diffraction 
experiments with the spatial light modulator: the 
boundary between physical and digital optics," 
ATOM-N 2008, Proc SPIE 7297-729704 (2009)  

[12] P. C. Logofatu, F. Garoi, A. Sima, B. Ionita and D. 
Apostol, "Classical holography experiments in digital 
terms," J. Optoelectron. Adv. M. 12(1) 85-93 (2010)  

[13] P. C. Logofatu and D. Apostol, "The Fourier 
transform in optics: from continuous to discrete or 
from analogous experiment to digital calculus," J. 
Optoelectron. Adv. M. 9(9), 2838-2846 (2007).  



The Fourier transform in optics: from continuous to discrete (II)                                              1321 
 

 

[14] George B. Arfken and Hans J. Weber, Mathematical 
methods for physicists, Harcourt Academic Press, San 
Diego (2001).  

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. 
Flannery, Numerical Recipes in C++, Cambridge 
University Press, Cambridge (2002)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[16] http://www.mathworks.com/access/helpdesk/ 
         help/techdoc/ref/fftshift.html  
[17] “An Introduction to the Sampling Theorem”, National 

Semiconductor Application Note 236 (1980), 
www.national.com/an/AN/AN-236.pdf  

 
 
__________________________ 
* Corresponding author: plogofatu@yahoo.com. 
 


